راهبری شرکتی و ارزشیابی شرکت: مدلی با استفاده از شبکه عصبی مصنوعی

Authors

Abstract:

در این تحقیق رابطه بین سازوکارهای راهبری شرکتی، شامل اندازه هیات مدیره، عدم داشتن پست اجرایی در شرکت توسط رئیس هیات مدیره، نسبت اعضای غیر موظف هیات مدیره و درصد سرمایه گذاران نهادی، با ارزش سهام شرکت، بررسی می‌شود. جهت ایجاد ارتباط بین عناصر راهبری شرکتی و ارزش سهام شرکت از مدل ارزشیابی اولسون(1995) استفاده شده و سازوکارهای راهبری شرکتی جایگزین بخش "سایر اطلاعات" در این مدل می‌گردند. پیشینه تحقیق نشان می‌دهد که بین سازوکارهای راهبری شرکتی و قیمت سهام شرکت یک رابطه خطی و مشخص وجود ندارد، به همین دلیل شبکه عصبی مصنوعی نیز برای شناخت هر گونه روابط بین متغیرهای مدل بکار می‌رود، به عبارت دیگر فرض پویایی خطی اطلاعات، در مدل اولسون به چالش کشیده می‌شود. بعد از طراحی مدل شبکه عصبی مصنوعی، نتایج حاصله با روش حداقل مربعات معمولی مقایسه شده است. برای طراحی مدل شبکه عصبی و تشکیل معادله رگرسیون خطی، جمعا از اطلاعات 776 سال- شرکت و برای آزمون شبکه عصبی و رگرسیون خطی از اطلاعات 62 سال شرکت در طی سال‌های 1389-1380 استفاده گردیده است. شبکه عصبی مورد استفاده در این تحقیق از نوع پرسپترون چندلایه با الگوریتم یادگیری پس انتشار خطا است و در آن از دو لایه میانی جهت شبیه سازی روابط بین متغیرها استفاده شده است. نتایج حاکی از آن است که: 1. استفاده از سازوکارهای راهبری شرکتی به عنوان بخش سایر اطلاعات در مدل اولسون باعث افزایش قدرت توضیح دهندگی مدل ارزشیابی مذکور می‌شود، و 2. استفاده از شبکه عصبی مصنوعی نسبت به روش حداقل مربعات معمولی، برای تحلیل روابط بین متغیرها، قدرت توضیح دهندگی و دقت مدل را بالا می برد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

رابطه نظام راهبری شرکتی با ارزش شرکت

جهانی شدن با پیوند شرکتها به بازارهای بین المللی و افزایش فضای رقابتی، تجدید ساختار شرکتها را ضروری کرده است. ادغام شرکت ها و گسترش بازارهای هدف، از جمله تلاشهایی هستند که شرکتها برای ادامه حیات اقتصادی خود به آن متوسل میشوند. این شرکت ها همچنین برای تامین منابع مالی خود ناگزیر به استفاده از بازارهای سرمایه داخلی و بین المللی هستند و در این میان نظام راهبری شرکتی معیاری است که نقشی اساسی در تصم...

full text

مدل‌سازی بازده کششی تراکتور با استفاده از شبکه عصبی مصنوعی

در این مطالعه آزمایش­های مزرعه­ای در شرایط متفاوت عمق شخم، سرعت پیشروی و میزان وزنه­های متصل به تراکتور انجام شد. در این تحقیق، عمق شخم در چهار سطح 5، 10، 15 و 20 سانتی­متر، سرعت­های پیشروی در چهار سطح 5/2، 5/3، 5/4 و 5/5 کیلومتر بر ساعت و میزان سنگین­کننده نیز در چهار سطح 0، 40، 80 و 120 کیلوگرم قرار گرفت. شبکه­های عصبی مدل­سازی شده در این تحقیق که به­ منظور پیش­بینی بازده کششی تراکتور مورد اس...

full text

تعیین ارزش دارایی‌های نامشهود با استفاده از شبکه عصبی مصنوعی

درک عوامل موثر بر ارزش شرکت برای سرمایه‌گذاران و اعتباردهندگان پیش از اتخاذ تصمیمات سرمایه‌گذاری یا اعطای تسهیلات، امری حیاتی است. از آن‌جایی که اقتصاد دانش‌محور در حال تکامل یافتن است، روش ایجاد ارزش شرکتی از شیوه سنتی مبتنی بر دارایی‌های فیزیکی به دانش نامشهود منتقل شده است. از این‌رو در آینده نه چندان دور، ارزش‌گذاری دارایی‌های نامشهود به موضوع مهمی در اقتصاد مبدل خواهد شد. این مطالعه بر آن ...

full text

برآورد دمای روزانه خاک با استفاده از شبکه عصبی مصنوعی

دمای خاک یکی از متغیرهای مهم در مطالعات هیدرولوژی، هواشناسی، کشاورزی و اقلیم­شناسی است که اندازه­گیری و برآورد آن ضروری است. با توجه به این­که دمای خاک فقط در ایستگاه­های سینوپتیک کشور اندازه­گیری می­شود، کمبود آن در نقاط فاقد ایستگاه از چالش­های بزرگ در بسیاری از مطالعات مرتبط با کشاورزی است. در این پژوهش، با استفاده از پارامترهای هواشناسی ایستگاه سینوپتیک شیراز در یک دوره 9 ساله (2008-2000) ب...

full text

پیش‌بینی ابتلا به دیابت با استفاده از شبکه عصبی مصنوعی

Background: Diabetes ever-increasing prevalence and the heavy burdens of controlling and treatment of the disease on people and the country have turned to be greatest challenges for governmental and healthcare authorities. Therefore, the disease prevention takes top priority and to do so the only possible way is detecting the effective parameters and controlling them. This study is about to for...

full text

تقریب مقادیر ویژه ورق با استفاده از شبکه عصبی مصنوعی

هدف از این مقاله، تعیین فرکانس زاویه‌ای طبیعی ورق‏ها با توجه به شرایط مختلف تکیه‌گاهی به کمک شبکه عصبی مصنوعی است. یکی از مشهورترین روش‏های آموزش شبکه عصبی، استفاده از الگوریتم انتشار برگشتی است. این الگوریتم برای آموزش شبکه‌های چند لایه قابل کاربرد است. الگوریتم انتشار برگشتی بر مبنای کاهش گرادیان بوده و در آن شیب خطا به تدریج کم شده و وزن‏های شبکه برای رسیدن به حداقل خطا، تعدیل می‌شود. در این...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 18  issue 64

pages  129- 150

publication date 2011-08-23

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023